استفان باناخ

Authors

محمد صال مصلحیان

حامد اسماعیل زاده

abstract

شرح مختصر زندگانی و فعالیت های علمی استفان باناخ ریاضیدان لهستانی.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

استفان پروکفیویچ تیموشنکو

در مقاله پیش رو سعی داریم که اقتباسی باز از کتاب بیوگرافی استفان تیموشنکو از ریچارد سودربرگ و انتشارات آکادمی علوم می باشد و با تکیه بر زندگی نامه استفان تیموشنکو کمی بیشتر با زندگی او و افکارش آشنا شویم تا شاید بتوانیم همچون او چراغی فروزان برای علاقه مندان رشته مهندسی مکانیک باشیم. استفان تیموشنکو کسی بود که بین علوم محض و علوم کاربردی پیوند برقرار کرد و علومی مانند ریاضیات و فیزیک را در سر ف...

full text

روابط اندازه پذیر و معادلات عملگری تصادفی در فضاهای باناخ

در این مقاله، نگاشت های چندمقداری یا روابط اندازه پذیر را معرفی و ارتباط بین تعاریف مختلف اندازه پذیری آنها را مطالعه می کنیم. موضوع نگاشت های چندمقداری اندازه پذیر در نظریه بازیها و نظریه کنترل کاربرد دارد. مطالب بیان شده را برای بررسی وجود جواب معادلات عملگری تصادفی غیرخطی در فضاهای باناخ به کار می بریم.

full text

نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

full text

جبرهای باناخ انقباض پذیر

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

full text

آغاز توپولوژی در لهستان

تا پایان قرن نوزدهم، لهستان در عرصۀ ریاضیات چندان مورد توجه نبود. به یک باره، بعد از جنگ جهانی اول، مکتب ریاضیات لهستان شهرتی فراگیر یافت و دو شهر بدل به مراکز مهم ریاضیات شدند: یکی لووف  که در آنجا استفان باناخ و جمعی دیگر دربارۀ آنالیز تابعی پژوهش می کردند و دیگری وارشاو  که حوزۀ اصلی پژوهش در آنجا، نظریۀ مجموعه ها و توپولوژی بود. در این مقاله، تمرکز ما بر دستاوردهای لهستان در حوزۀ توپولوژی خ...

full text

My Resources

Save resource for easier access later


Journal title:
فرهنگ و اندیشه ریاضی

Publisher: انجمن ریاضی ایران

ISSN 1022-6443

volume سال 26

issue شماره پیاپی 38 2007

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023